Project Plan Lightning Talk

William Sengstock, Kelly Jacobson, Zach Witte, Austin

Buller, Sam Moore, Dan Vasudevan, Jacob Kinser

Project Overview
and Management
Style

Project Goal is to identify incorrectness that
happens in POS tagging software
documentation.

Due to nature of our project, we will use a

waterfall management approach
o Different phases include

NLP research

Dataset discovery

Analysis of NLP models

Formulating new ways to train models for
higher accuracy.

Github will be used for version control of code
Discord is used for communication and google
drive stores our group assignments.

Task
Decomposition

Research

Learn basics

Data pre-processing

Vectorization

Unsupervised vs. supervised learning
Clustering

Model Construction/Development

Election of libraries
Tokenization experimentation
POS tagging
Vectorization
Analysis

o Gather results

o Studying accuracy
o Training model

Rough Schedule

First Client Meeting Thursday, 9/9
Week 1: 9/9-9/16
o research on NLP basics
Week 2-3: 9/16-9/23(skipped meeting)-9/30
o research on different NLP techniques,
vectorization, supervised/unsupervised learning
Week 4 : 9/30 - 10/7
o building our first NLP models
Week 5: 10/7 - 10/14
o more NLP models using different libraries (Spacy,
StanfordNLP, etc)
Week 6: 10/14 - 10/21
o Analyze our respective models and the
accuracy/training methods
Week 7 - Final Week
o Come to a consensus on what model to focus on
o Study the different advantages and
disadvantages of the chosen model
o Work to better (train) the model to optimize
efficiency regarding NLP in software
documentation

Risks/Risk e
Mitigation

e For NLP models, build running code in Jupyter
Notebook

e 0.1 probability for risk is low, because code
needs to be correct to run

Task 2

e Compare different packages for each word
embedding technique

e 0.2 probability for risk, possibility of repetition in
packages, but still relatively low

Overall

e Low number of risks because the project
consists of running and comparing code

e Risks are limited to making sure the code runs
properly, and successfully differentiating word
embeddings

